Week 9 Part |

Kyle Dewey

Overview

® Dynamic allocation continued
® Heap versus stack

® Memory-related bugs

® Exam #2

Tuesday, August 28, 12

Dynamic Allocation

Recall...

® Dynamic memory allocation allows us to
request memory on the fly

® A way to use only what you need

// size t is an integral defined

// elsewhere

vold* malloc(size t numBytes);

void* calloc(size t num, size t size);
volid* realloc(void* ptr, size t size);

Tuesday, August 28, 12

Recall...

® Requesting some unknown number of
Integers at runtime

int numToAllocate;
scanf (“%1”, &numToAllocate);
int* nums =
malloc(sizeof (1nt) * numToAllocate);
int nums2[numToAllocate]; // ERROR

Tuesday, August 28, 12

Multidimensional Arrays

® Need two separate allocations:
® Array of columns

® Fach column individually

Example

® Function that makes a matrix with a given
number of rows and columns, all initialized
to 0

int** makeMatrix(i1nt rows, 1nt cols) {
1nt** retval =
calloc (rows, sizeof (int~*));
int row;
for(row = 0; row < rows; row++) {
retval| row | =
calloc(cols, sizeof(int)):;

J

return retval;

j

Tuesday, August 28, 12

Question

® VWhat differs here!?

int** makeMatrix(i1nt rows, 1nt cols) {
1nt** retval =
calloc (rows, sizeof (int~*));

int* temp = calloc(cols, sizeof (int));

int row;

for(row = 0; row < rows; row++) {
retval| row | = temp;

J

return retval;

j

Tuesday, August 28, 12

With Structs

® Works the same way

struct Foo {int x; 1nt v;};
int main () {
struct Foo* f =
malloc(sizeof (struct Foo));
f->x = 10;
ft—->y = £->x;
return O;

J

Tuesday, August 28, 12

With Structs

® Works the same way

struct Foo {i1nt x; 1nt v;};
int main() |

int x;

struct Foo** fs =

calloc(NUM STRUCTS,

sizeof (struct Foo*));
for(x = 0; x < NUM STRUCTS; x) {
fs|] x | =
malloc(sizeof (struct Foo));

J

return 0O;

)

Tuesday, August 28, 12

Example

® VWe want to calculate the sample standard
deviation of some input numbers

® This formula is below:

|
S = — , Zl Ir; — l—"")?'
\ °\ — 1 1=1

Tuesday, August 28, 12

Problems

® VWe need the average in order to calculate
it, so we need to keep the numbers around

® Can’t simply calculate as we go

® Don’t know how many numbers we need
to read in

® Solution: Dynamic memory allocation!

Tuesday, August 28, 12

stddev.cC

uuuuuuuuuuuuuuuuuuu

Heap vs. Stack

Recall...

® Say we have multiple function calls

int foo()

J

{
int x = 7;
return x * 2;

int bar () {

J

int v = 13;
return yv + fool();

int baz () {

J

int z = 24;
return z * 3;

int main () {
printf(V%17,
bar ()

return 0;

) ;

Tuesday, August 28, 12

Recall...

® How is this allocated in memory!?

int foo()

J

{
int x = 7;
return x * 2;

int bar () {

J

int v = 13;
return vy + fool();

int baz () {

J

int z = 24;
return z * 3;

int main () {
printf(V%17,
bar ()

return 0;

) ;

Tuesday, August 28, 12

One Possibility

int foo() {
int x = 7; Address
return x * 2;
} 0
int bar () {
int vy = 13; |
return y + fool();
} 2

int baz () {
int z = 24;
return z * 3;

J

Tuesday, August 28, 12

Pros

Address

® Simple

® Fast

Cons

® Wasteful (z is allocated but is unused in
this code)

® Does not generally allow for recursion

int fact(1nt n) {

if (n o=) Address
return 1; s 0
} else |

return n * fact(n-1);

J
J

Tuesday, August 28, 12

Another Possibility

® Use a stack

® As we call functions and declare
variables, they get added to the stack

® As function calls end and variables are no
longer alive, they get removed from the
stack

® Do everything relative to the top of the
stack

Tuesday, August 28, 12

Stack

inF foo () | int main () {
int x = 7; printf (“%i”,
return x * 2,’ bar()),.
} return 0O;
int bar () { }
int v = 13;
return y + foo(); Address

}
int baz () {

int z = 24;
return z * 3;

J

Tuesday, August 28, 12

Stack

inF foo () H int main () {
int x = 7; printf (“%i”,
return x ~* 2,’ bar());
} return 0;
int bar () { }
int v = 13;
return y + foo(); Address

}
int baz () {

int z = 24;
return z * 3;

J

Tuesday, August 28, 12

Stack

inF foo () H int main () {
int x = 7; printf (“%i”,
return x ~* 2,’ bar());
} return 0;
int bar () { !
int v = 13;
return y + foo(); Address

J
int baz () {

int z = 24;
return z * 3;

J

Tuesday, August 28, 12

int foo /()

J

1nt X

return x * 2;

int bar ()

J

int vy

return yv + fool();

int baz ()

J

int z

return z * 3;

{
7

{
13;

{
24

Stack

int main () {
printf (“%17,

bar ())
return 0O;

Address

Tuesday, August 28, 12

int foo /()

J

1nt X

return x * 2;

int bar ()

J

int vy

return y + foo();

int baz ()

J

int z

return z * 3;

{
7

{
13;

{
24

Stack

int main () {
printf (“%17,

bar ())
return 0;

Address

Tuesday, August 28, 12

int fool()

J

1nt X

return x * 2;

int bar ()

J

int vy

return y + foo();

int baz ()

J

int z

return z * 3;

{
7

{
13;

{
24

Stack

int main () {
printf (“%17,

bar ())
return 0;

Address

Tuesday, August 28, 12

int fool()

J

int x

return x * 2;

int bar ()

J

int vy

return y + foo();

int baz ()

J

int z

return z * 3;

{
!5

{
13;

{
24

Stack

int main () {
printf (“%17,

bar ())
return 0;

Address

TOS

v | TOS - |

Tuesday, August 28, 12

int fool()

J

int x

return x * 2;

int bar ()

J

int vy

return y + foo();

int baz ()

J

int z

return z * 3;

{
!5

{
13;

{
24

Stack

int main () {
printf (“%17,

bar ())
return 0;

Address

TOS

v | TOS - |

Tuesday, August 28, 12

int fool()

J

int x

return x * 2;

int bar ()

J

int vy

return y + foo();

int baz ()

J

int z

return z * 3;

{
!5

{
13;

{
24

Stack

int main () {
printf (“%17,

bar ())
return 0;

Address

Tuesday, August 28, 12

int foo ()

J

int x

return x * 2;

int bar ()

J

int vy

return y + foo () :;

int baz ()

J

int z

return z * 3;

{
!5

{
13;

{
24

Stack

int main () {
printf (“%17,
bar ()
return O;

) ;

Address

Tuesday, August 28, 12

Notice

® [he function baz was never called, and the
variable z was thusly never put on the
stack

® At all points, only exact as much memory
as was needed was used

Tuesday, August 28, 12

Recursion

® Since stacks grow dynamically and allocate
on the fly, we can have recursion

int fact(1nt n) {
1f (n ==) |
return 1;
} else {
return n * fact(n-1);

J
J

int main () {
fact (95) ;
return 0O;

Tuesday, August 28, 12

Recursion

int fact(int n) {
1f ((n ==) |
return 1;
} else
return n * fact(n-1);

J
J

int main () {
fact(5);
return 0O;

TOS

Tues

Recursion

int fact(int n) {
1f ((n ==) A
return 1;
} else
return n * fact(n-1);

J
J

int main () {
fact(5);
return 0O;

Recursion

int fact(int n) {
1f ((n ==) A
return 1;
} else
return n * fact(n-1);

J
J

int main () {
fact(5);
return 0O;

Recursion

int fact(int n) {
1f ((n ==) A
return 1;
} else
return n * fact(n-1);

J
J

int main () {
fact(5);
return 0O;

Recursion

int fact(int n) {
1f ((n ==) A
return 1;
} else |
return n * fact(n-1);

J
J

int main () {
fact(5);
return 0O;

Tuesday, August 28, 12

Recursion

int fact(int n) {

1f (n == 0) {
return 1;
} else |

return n * fact(n-1);

J
J

int main () {
fact(5);
return 0O;

Tuesday, August 28, 12

Stack Pros/Cons

® Only memory that is required is allocated
® Can have recursion

® Slower (everything now relative to the top
of the stack instead of absolute)

Question

® |s there anything odd with this code!?

int* doSomething () {
int x;
return &XxX;

J

int main () {

int w;
1nt* p = doSomething() ;
*p p— 5;

return 0O;

Tuesday, August 28, 12

Question Continued

int* doSomething () {
int x;
return &X;

J

int main () {
int w;
int* p = doSomething()
*p — 5;

return 0;

Tuesday, August 28, 12

Question Continued

int* doSomething () {
int x;
return &X;

J

int main () {
int w;
int* p = doSomething() ;
*p — 5;

return 0;

Tuesday, August 28, 12

Question Continued

int* doSomething () {
int x;
return &X;

J

int main () {
int w;
int* p = doSomething() ;
*p — 5;

return 0;

Tuesday, August 28, 12

Question Continued

int* doSomething () {
int x;
return &X;

} TOS
int main () {
int w; TOS - |
int* p = doSomething()
*p = 5;

return 0;

Question Continued

int* doSomething () {
int x;
return &xX;

} TOS
int main () {
int w; TOS - |
int* p = doSomething()
*p = 5;

return 0;

Question Continued

int* doSomething () {
int x;
return &x;

int main () {

int w;
int* p = doSomething() ;
*p — 5;

return 0;

Tuesday, August 28, 12

Question Continued

int* doSomething () {
int x;
return &x;

int main () {

int w;

int* p = doSomething() ;

*]_O = 5.

return 0; Once TOS is updated, w’s
) address is the same as x’s

address

Tuesday, August 28, 12

In General

® Stack allocation is done automatically

® Pointers to places on the stack are ok, as
long as you make sure the address will
always be alive

® Pointers to the stack can be safely passed
as function parameters, but not safely
returned

Tuesday, August 28, 12

Heap

® Dynamic memory allocation allocates from
a section of memory known as the heap

® Completely manual allocation
® Allocate when you need it
® Deallocate when you don'’t

® The computer assumes you know what
you're doing

Tuesday, August 28, 12

Heap Allocation

® Reconsider the code from before:

int* doSomething () {
// int x;
// return &x;
return malloc(sizeof (1int));

J

int main () {

int w;
int* p = doSomething()
*p — 5;

return 0;

J

Tuesday, August 28, 12

Heap Allocation

® This code is perfectly fine

® There is nothing that will be
automatically reclaimed

® Can pass pointers any which way

Heap Allocation Bugs

Memory Leak

® Allocated memory is not freed after it is
needed (wasted)

® Generally, no pointers exist to the portion
allocated, and so it can never be reclaimed

® Why do we need a pointer?

vold makelLeak () {
malloc(sizeof(1nt)) ;

Tuesday, August 28, 12

Dangling Pointer

® VWe keep a pointer to something that has
been freed

® That memory can do just about anything
after it is freed

int* dangle () {

int* p = malloc(sizeof(1nt));
free(p)7
*p = 5;

return p;

)

Tuesday, August 28, 12

Double Free

® We called free on something that was
already freed

vold doubleFree () {
int* p = malloc(sizeof(1nt
free(p)’
free(p)’

)

) ;

Tuesday, August 28, 12

On Memory Bugs

® Determining when something can be freed
is generally difficult

® Theoretically impossible to determine
precisely in general

® [ry to use stack allocation as much as
possible

Exam #2

Statistics

o As:8
® Average: /8 ® B's: |2
® Min:52 o C’s: |5
® Max: 97 ® D’s: 4

® [’s:2

